
Test Port – A Real-time Embedded Monitor (Keyboard & Glass TTY)

Priority Tasking is illustrated in this design in which the Test Port task is a low priority

task. Priority tasking allows CPU load distribution to occur automatically among tasks

depending on the demand of each task and task priority. The Test Port task is using what

would otherwise be idle capacity. “Time slice” tasking is NOT chosen because that

scheme presumes the designer can know present and future CPU loading demands from

each task.

Priority tasking can be visualized as a way of controlling what appears on a multi-trace

oscilloscope to be chaotic activity as the processor responds to a blizzard of interrupts

and where traversing the same paths through the code are seldom of constant duration.

High priority tasks (typically interrupts and IO) are time critical. By design, those code

segments are kept short. They queue workload for medium or low priority task where

time to completion can fluxuate.

A good rule of thumb is to keep average CPU loading below 50%. Momentary loads

may well exceed the 50% loading threshold. However, the intent is to smooth processor

loading by postponing less time critical work to run when the processor would otherwise

be idle.

Priority tasking is illustrated in the diagram below where high priority work is at the top

and low priority work is at the bottom:

125

130

129

128

127

126Parked Task

Kernel IO
Number

Cruncher

2 KHz Interval

Timer

Time &

Synchronization

Main

Background Test Port

Start Main

255 Serial

Device
Timer Device

Priority Tasks

Round-robin Tasks

Operating System

Priority

Figure 1

Parked tasks at the bottom are those whose priority is so low (125 or 126) that the OS

scheduler will never run them because higher priority tasks are always waiting to run.

For example, either the Main Background task or the Test Port Task is always alive and

waiting to run at priority 127. A task may raise the priority of a parked task while

parking itself (by lowering its own priority) as do the Main Background and Test Port

tasks. They each give all remaining processor idle capacity to the other in a “round-

robin” hand over.

In this example, the Main Background task launches initially at the highest possible

priority (255). That high priority allows it to control the processor while initializing all

other task priorities, queues, etc at start up. Once initialization is complete it lowers its

priority, thus allowing the OS scheduler to start running the established task and event

sequences.

In this example the Number Cruncher task is exchanging Synchronous messages with the

Kernel IO task that cause each task at priority 129 to “pend” waiting for a message back

from the other, except the Number Cruncher parks itself (priority 125) after receiving

back the Kernel synchronous message.

The high priority (130) 2KHz Interval Timer task fires and raises the Number Cruncher

task from parked at priority level 125 to running at level 129 so that one more cycle of

synchronous messages are exchanged between the two task at level 129 before the

number cruncher parks itself once again. The 2KHz task is little more than a heartbeat

that keeps the data flow moving. It pends itself waiting for the next 500 usec high

resolution timer event to fire. In this example, the 2 KHz task substitutes for what would

normally be an IO interrupt handler.

In this example, the Kernel IO task resides in kernel space while the Number Cruncher

resides in application space. The Kernel IO task is using the Test Port for debugging

platform hardware.

The Test Port Task uses one RS-232 serial port interfacing to a PC keyboard and text

display. It allows the developer to write more specific diagnostics than are possible with

a general purpose debugger. Custom scanning text displays driven by the test port task

allow the developer an organized view of what is happening in specific functions like the

Number Cruncher. Test Port task diagram is below:

First

Entry?

Capture Stack

Pointer @ Top

Restore Stack

Pointer @ Top

ESC?

Test Port Sleep

tpsleep()

Keyboard

Command Input

Test Port Task

tport()

tputc(), tprintf()

xputc(), xprintf()

iputc(), iprintf()

ttom()

outwait()

inwait()
Do Command

docmd()
getline()

Display Output

FOREVER {

-

-

}

cmdtable[]

T
e

s
t
P

o
rt

 T
a

s
k

O
th

e
r

T
a

s
k
s

View or write into Other Tasks

Yes

No

getQfrTP

putQtoTP

Test Port IO

Queues

T
x
 D

ri
v
e

r

R
x
 D

ri
v
e

r

E
S

C
 C

h
a

r?

`

Get Char

Utilities

Put Char

Utilities

ESC Char == Abort,

Restart Test Port Task

Tera Terminal

RS-232 (or Telnet)

Feb 11, 2011 NH

tprintf()

From tport task (with tpsleep)

xprintf()

From other tasks (NO tpsleep)

Most Test Port time is

spent sleeping here while

waiting to put or get

characters.

ESC Char == Abort,
Yes

Figure 2

Most tasks enter into a loop where they remain “forever”, being parked and un-parked, or

pended and un-pended inside the loop. The Test Port Task also uses forever loops except

when an ESC keyboard character is received. The ESC character causes the task to

completely restart by calling itself at the Test Port function entry point. Such action

would eventually cause the Test Port stack to underflow, except the stack pointer is

restored to the top of the Test Port stack where its location was captured and remembered

on first entry.

Test Port CPU utilization is kept low by the relatively slow IO speed of the serial

channel. Most Test Port time is spent waiting to get or put characters at the queues to the

RS-232 serial channel.

Test Port history has evolved from when a 16 kbyte Cromemco S-100 bus video card

was first placed in the top 1/4
th

 of Z-80 CPU memory space (1977). Program variables

assembled for storage in video memory could be watched on the CRT display. Video

memory and program variables were scanned and displayed at the CRT refresh rate.

In the generations to follow, the S-100 bus and video card are replaced by serial

communications and a computer display terminal. New contributors made it possible for

the scanning display to be formatted by a variant of printf() and the Test Port became an

embedded task running on any RTOS.

